

How Chemical Engineering Helps Oil Recovery?

Zhangxin Chen Reservoir Simulation Group University of Calgary

Slide 1 RESERVOIR SIMULATION GROUP

- Introduction
- Chemical Flooding
- Collaborations
- Summary

Outline

Introduction

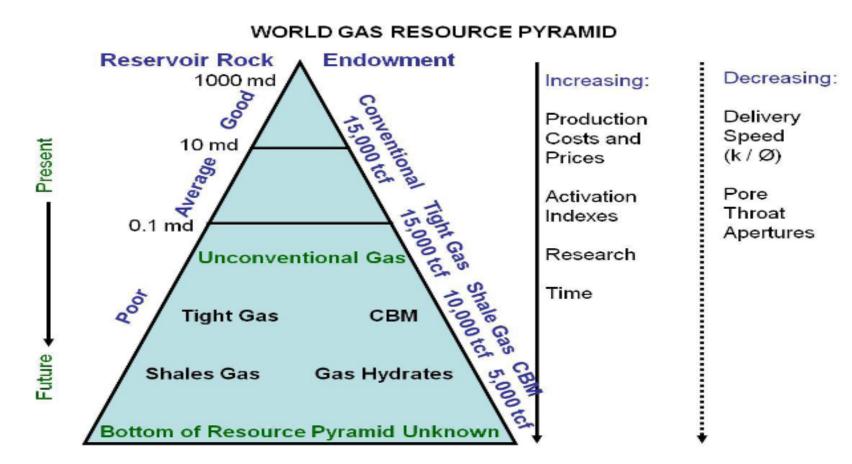
- Chemical Flooding
- Collaborations
- Summary

Slide 3 **RESERVOIR SIMULATION GROUP**

Fossil Fuel Resources

- Conventional Oil and Gas
 - Light Oil (viscosity < 100 cp)
 - Natural Gas
- Unconventional Fossil Fuel

Unconventional Gas Resources

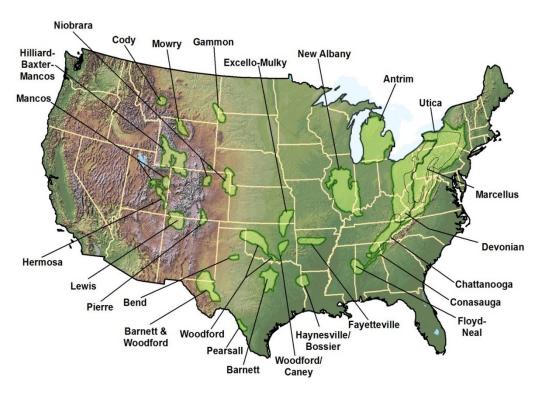

- Coal bed methane (CBM)
- Tight gas
- Shale gas
- Gas hydrates

Unconventional Gas Resources

Estimates of global unconventional gas in place: 783,840 Tscf (equivalent, 130.64 Tboe)

Slide 6 **RESERVOIR SIMULATION GROUP**

Gas Classification



	Shale Gas	СВМ	Natural Gas	Tight Gas
Formation	Shale Rock	Coal Bed	Sandstone/Carbonate Rock	Sandstone/Carbonate Rock
Genesis	Thermal and Biological	Thermal and Biological	Thermal, Biological and Crude Oil Cracking	Thermal, Biological and Crude Oil Cracking
Preservation	Free and Adsorbed Gas	Adsorbed Gas	Free Gas	Free Gas
Rock Property	Ф: 4%-6%, K:<0.001md	Φ: 1%-5%, K: 0.5-5.0md	Low Φ: 8%-20%, K: 0.1-50md Middle Φ: 20%-25, K: 50-300md High Φ>25%, K>300md	Ф: 6%-8%, К: <0.1md SCHULICH
7 RES	School of Engineering			

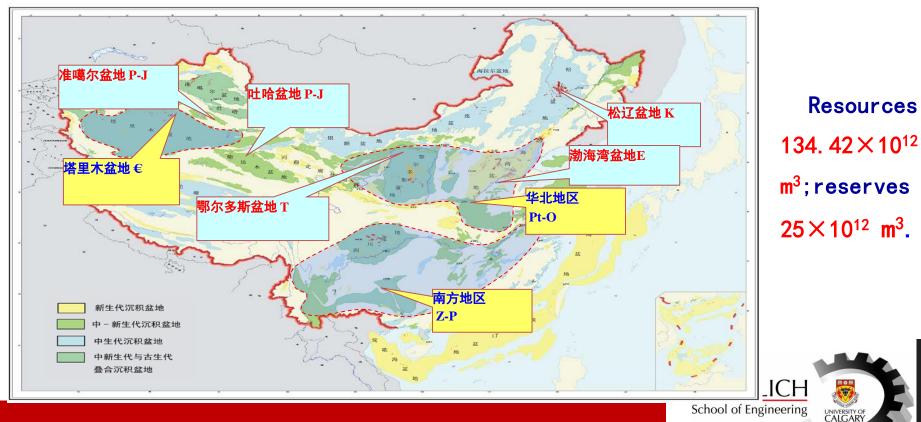
Shale Gas Plays

USA Shale Gas Play Locations

Famous shale gas plays: Marcellus, Barnett , Eagle Ford. USA 48 States: resources 141.6~ $169.9 \times 10^{12} \text{ m}^3$; reserves $24.39 \times 10^{12} \text{ m}^3$.

Geological characteristics:

- Large scale reserves
- >Depth reasonable
- >Formation thick
- ≻High TOC
- >Ro 1.0-2.5% (most)
- High gas content



Slide 8 RESERVOIR SIMULATION GROUP

China Shale Gas Plays

China shale gas reserves: 25 tcm, comparable to USA 24.4 tcm, huge potential. Located in Sichuan, Erdos, Bohai Bay, Songliao, Jianghan, Tuha, Tarim, and Junggar Basins; rich resources, wide ranges, different types, and geological complexity.

Slide 9 **RESERVOIR SIMULATION GROUP**

Canada Shale Gas Plays

Natural Gas from Coal Shale Gas **Gas Hydrates Resources:** 4,995 Tcf of shale gas in place

September 24, 2008

UNIVERSITY OF

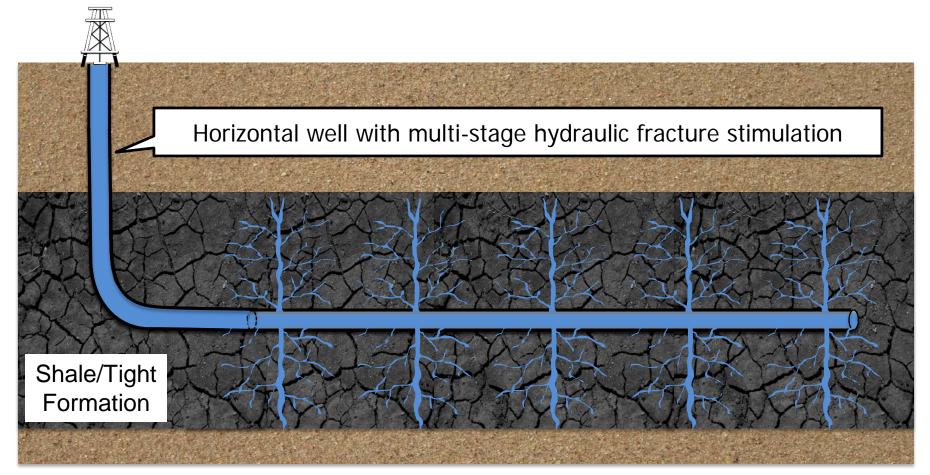
SCHULICH School of Engineering

Gas

in Canada

RESERVOIR SIMULATION GROUP Slide 10

Production of Shale Gas Reservoirs


- Horizontal well drilling
- Hydraulic fracking

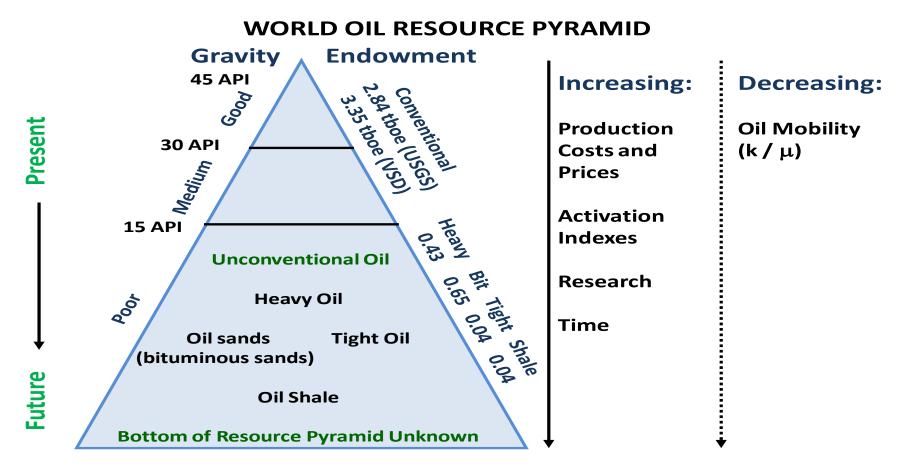
Slide 11 **RESERVOIR SIMULATION GROUP**

Production of Shale Gas Reservoirs

Courtesy of Mohammed Kanfar, PhD student, UofC

Slide 12 RESERVOIR SIMULATION GROUP

Unconventional Oil Resources


- Tight oil
- Shale oil
- Heavy oil
- Bitumen

Unconventional Oil Resources

Estimates of global unconventional oil in place: over 4 Tbbls

Slide 14 **RESERVOIR SIMULATION GROUP**

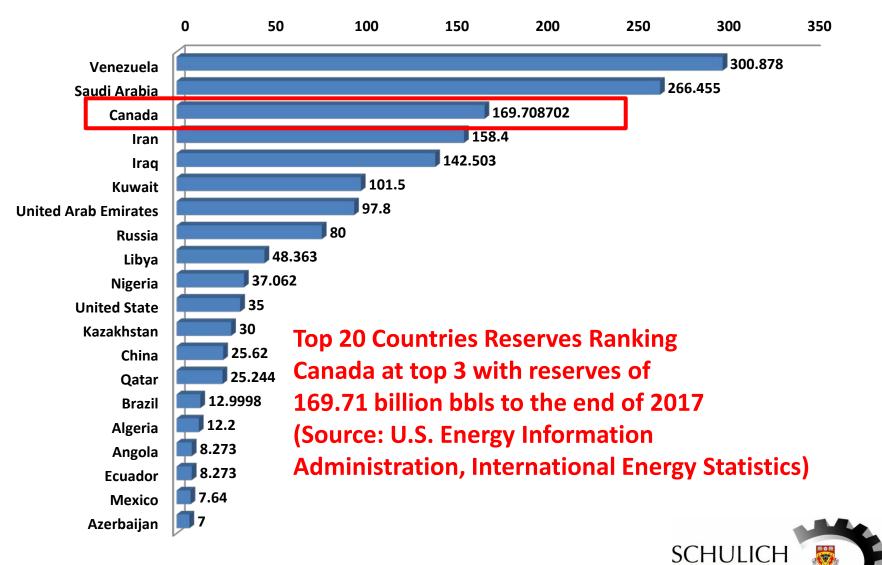
Oil Classification

Oil	Viscosity (cp)	Density (kg/m3)	Density (API)	
Conv. oil	<100	<934	>10	
Heavy oil	100- 10,000	934-1,000	10-20	
Bitumen	>10,000	>1,000	<10	

Slide 15 **RESERVOIR SIMULATION GROUP**

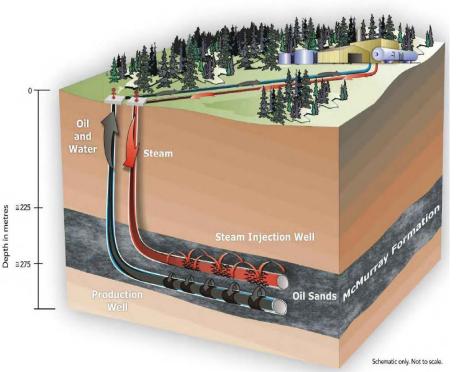
What Are Oil Sands?

- Composition
 - Inorganic material (75-80%, of which 90% quartz sand)
 - Water (3-5%)
 - Bitumen (10-12%)
- Unconsolidated, crumbled easily in hands



Canada Has Immense Oil Reserves

UNIVERSITY OF


School of Engineering

UNIVERSITY C

The Production Process

- Recovery of the in-place oil: up to 70%
- Great capital and operating costs: \$50 – 90% / bbl
- Oil sands: The fastest growing source of green housegas emissions in Canada

Outline

Introduction

- Chemical Flooding
- Collaborations
- Entrepreneurship
- Summary

Slide 19 **RESERVOIR SIMULATION GROUP**

Oil Recovery Methods

545

Primary Recovery

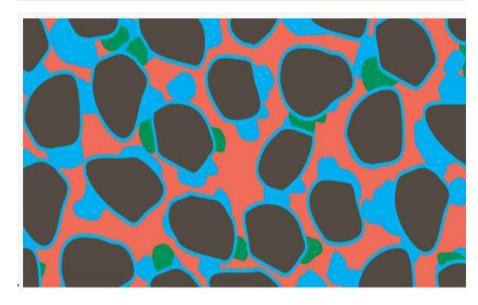
Secondary Recovery

Tertiary Recovery

Residual Oil

Water floodingGas flooding

Chemical flooding
Miscible & immiscible gas flooding
Thermal methods

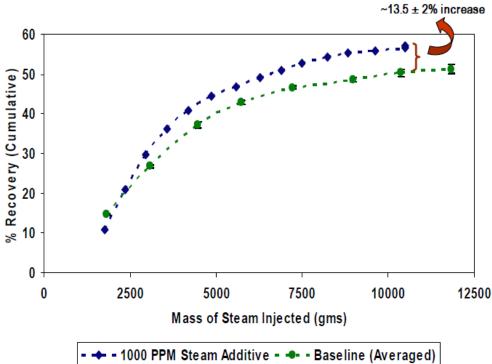

Slide 20 RESERVOIR SIMULATION GROUP

- Surfactant helps to reduce the IFT between oil and water.
- Polymer helps to increase the viscosity of displacing fluid.
- Alkaline chemicals react with crude oil to generate in-situ soap and increase pH.

Tertiary Phase

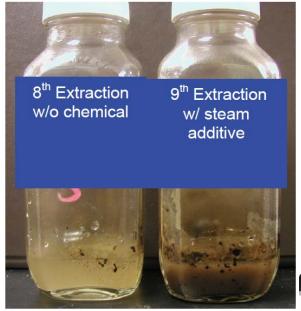
Gas, chemicals or steam free some residual oil left after primary and secondary recoveries.

UNIVERSITY OF



- Extensive research has been done to understand chemical flooding:
 - ASP phase behavior experiments
 - Rheological properties of polymer and ASP solution
 - Polymer conformance control
 - Optimal ASP formulation using a mixture of surfactants
 - Chemical adsorption
 - Field-scale implementation and evaluation
 - Process optimization and geological uncertainty

Hybrid versus pure steam

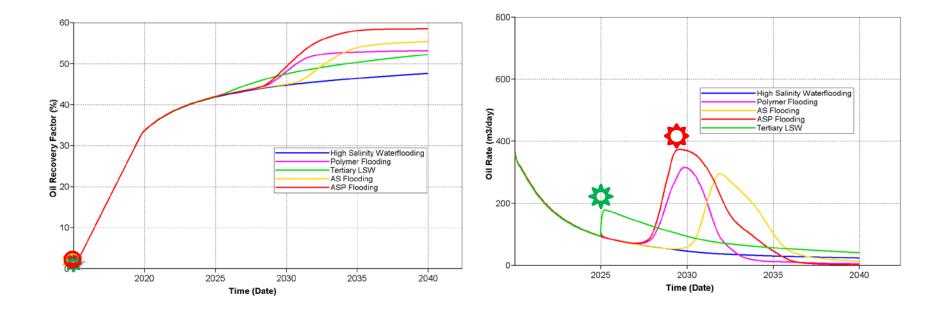

- Chemical additive co-injected with steam
- 1% chemical additive

Key Mechanism:

The chemical additive in condensed water retrieve more bitumen by allowing higher mobilization of the bitumen.

UNIVERSITY OF

School of Engineering


UNIVERSITY O

Field-Scale ASP Flooding

Tertiary ASP Flooding after Secondary Waterflooding

Slide 24 RESERVOIR SIMULATION GROUP

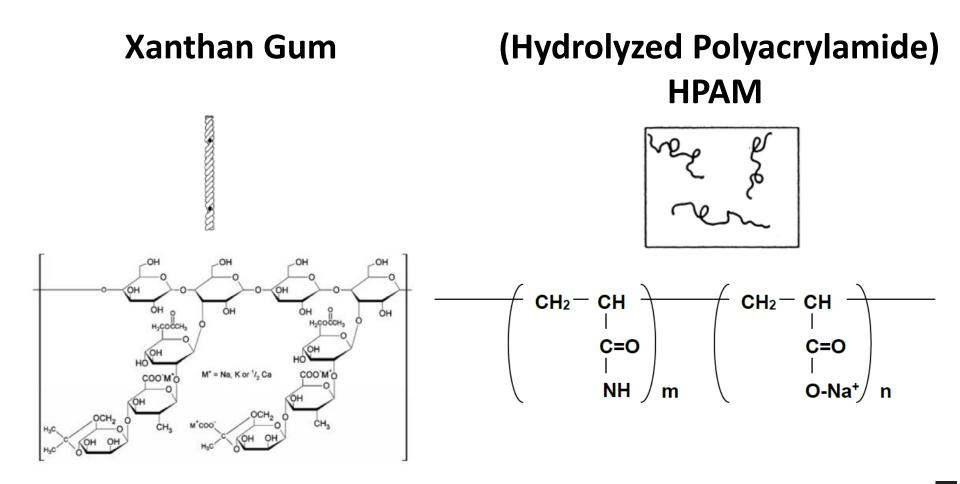
Oilfield Applications

- Most successful in Daqing Oilfield, China
- ASP flooding production in 2015 was 3.5 million tons, 9% of total production.

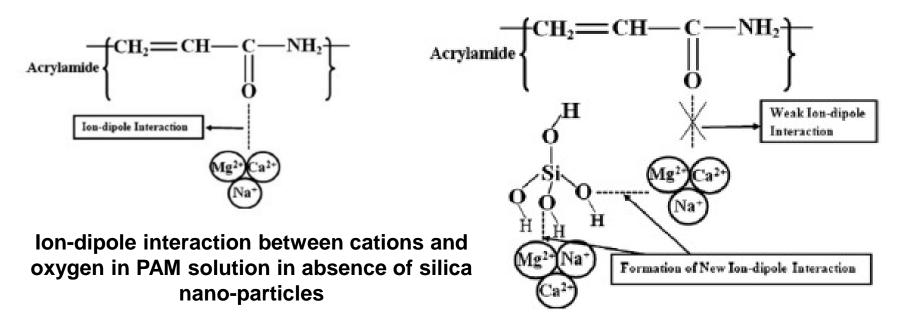
• Reference:

 H. Saboorian-Jooybari, M. Dejam, and Z. Chen, Heavy oil polymer flooding from laboratory core floods to pilot tests and field applications: Halfcentury studies, Journal of Petroleum Science and Engineering, 142 (2016), 85-100.

Challenges


- High Costs
- Not effective at high temperature
- Polymer precipitation in presence of various ions like Na⁺ and Ca²⁺
- Polymer retention in porous media
 - Adsorption on rock surfaces
 - Mechanically entrapped in narrow pore throats

SCHULICH School of Engineering



Slide 27 RESERVOIR SIMULATION GROUP

Adding Nano-particles

✓ Reaction between ions and nanoparticles

Ion-dipole interaction between cations and oxygen in PAM solution in presence of silica nano-particles

Why hybrid polymer / nanoparticles?

- Good candidate for enhanced heavy oil reservoirs with high amount of salts
- Reducing amount of polymers required for chemical flooding
- Decreasing polymer retention in porous media
- Increasing oil recovery in micro-scale due to its high elasticity and shear thickening behavior

Challenging Issues Worldwide

- Chemical Engineering May Help in
 - Wettability changing
 - Water breakthrough (block roles)
 - Mobility changing in nano-micro pores
 - Well corrosion

Outline

- Introduction
- Chemical Flooding
- Collaborations with Chinese Partners

Summary

Slide 31 RESERVOIR SIMULATION GROUP

Collaborations

• Supervision of Chinese Students

- 20 post-doc fellows
- 59 PhDs
- 50 MSc

Hosting Chinese Visiting Scholars: 30

Collaborations

• Training of High Level Employees: 120

- China National Petroleum Corp. (CNPC)
- China National Offshore Oil Corp. (CNOOC)
- China Petroleum & Chemical Corporation (SINOPEC)

Collaborations

Establishment of a Large Research Center in Beijing

Unconventional Oil and Gas Labs

Outline

- Introduction
- Chemical Flooding
- Collaborations
- Summary

Slide 36 **RESERVOIR SIMULATION GROUP**

Current Research

Studies of recovery processes for heavy oil and bitumen

Studies of unconventional oil and gas reservoirs

Development of accurate and fast solvers and simulators

Development of 3D Visual Analytics Technologies

Slide 37 **RESERVOIR SIMULATION GROUP**

Current Research Group

Graduate Students : over 50 MSc and PhD students

Post Docs and RAs: 11

Project Manager

Technical Managers

Administrative Assistants

Research Collaborators from Industry and Academia Globally

NSERC/Energi Simulation Chair

Alberta Innovates (iCORE) Chair

Research Consortium on Reservoir Simulation

Foundation CMG/Frank-Sarah Meyer Collaboration Center: Simulation & Visualization

Global Initiative in Research on Unconventional Oil and Gas: Beijing Site

18 Industrial Sponsors

Brion Energy

- CMG Reservoir Simulation Foundation
- Computer Modelling Group (CMG) Ltd.
- ConocoPhillips
- Devon Energy
- Husky Energy Ltd.
- IBM Canada
- Imperial Oil
- ♦ Kerui Group
- ♦ Laricina Energy Ltd.
- Shell
- Nexen
- PetroChina RIPED
- Sherritt
- Statoil
- Suncor
- Swan Hill Synfuels Inc.
- ♦ IBM Alberta Centre for Advanced Studies

Research Resources

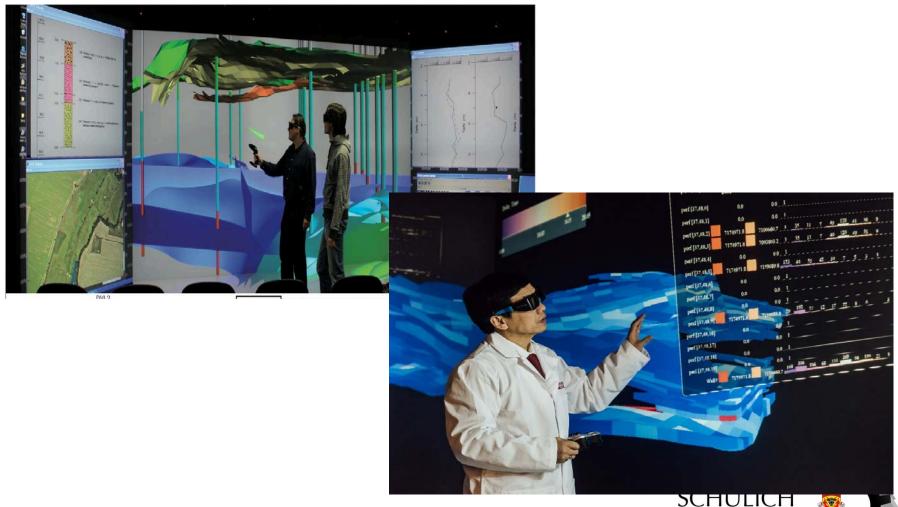
Computing hardware – EXAS IBM Cluster

CMG Simulation Laboratory

FCMG Frank and Sarah Meyer Collaboration Center for Simulation & Visualization Integration

Advanced oil/gas recovery laboratories

Enhanced Oil Recovery Labs

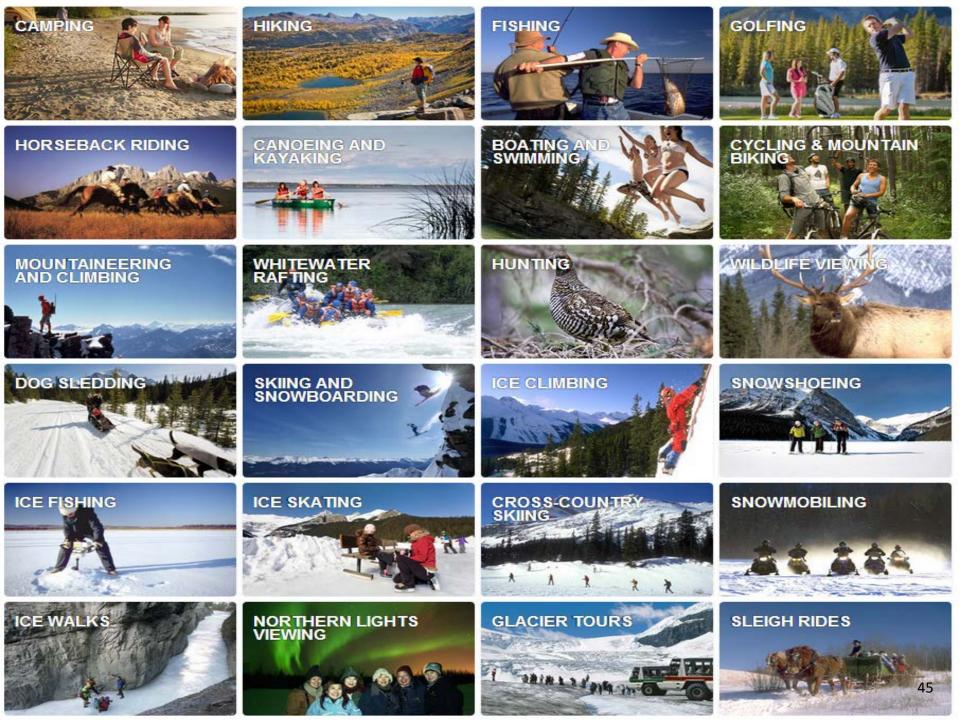

- Porous Media and Unconventional Oil Recovery Lab
- In Situ Combustion Lab
- Hydrocarbon Upgrading Lab
- Heavy Oil Properties (PVT, Viscosity, Phase Behavior) Lab
- SAGD (Steam Assisted Gravity Drainage) Lab
- Solvent Enhanced Recovery Process Lab
- Simulation and Visualization Lab

Slide 42 **RESERVOIR SIMULATION GROUP**

Slide 43 **RESERVOIR SIMULATION GROUP**

SCHULICH School of Engineering

Recent Publications


K. Wu, Z. Chen, J. Li, J. Xu, K. Wang, S. Wang, X. Dong, Z. Zhu, Y. Peng, X. Jia and X. Li, Manipulating nanoconfined water fluidity by temperature stimulation, *Angewandte Chemie*, 57 (2018), 8432-8437.

H. Zeng, K. Wu, X. Cui and Z. Chen, A practical model of wettability effect on nanoconfined water flow: Insights and perspectives, *Nano Today*, 16 (2017), 7-8.

K. Wu, Z. Chen, J. Li, X. Li, J. Xu and X. Dong, Wettability effect on nanoconfined water flow, *Proceedings of the National Academy of Sciences (PNAS)*, 114 (2017), 3358-3363.

K. Wu, Z. Chen, X. Li and X. Dong, Equation of state for methane in nanoporous material at supercritical temperature over a wide range of pressures, *Nature: Scientific Reports* 6, 33461 (2016), 1-10.

